

AGENDA

- Netafim approach
- Introduction
- Rice worldwide research topics
- Environmental research topics
- Gas emission
- Save water
- Arsenic uptake
- Rice by drip conclusion
- Future is drip irrigation?

Celebrating 50 years of

ACHIEVEMENT

- Leveraging our broad global network, extensive manufacturing capabilities, and proven 50-year track record, we provide the highest level of agronomic and technological support and service to our customers, closely accompanying them from start to finish.
- ► In addition, we provide the most innovative and bestin-class irrigation and complementary solutions.

No.1 global market share of >30%

10 Million

hectares irrigated

28

subsidiaries

16

manufacturing plants

2 Million

customers in

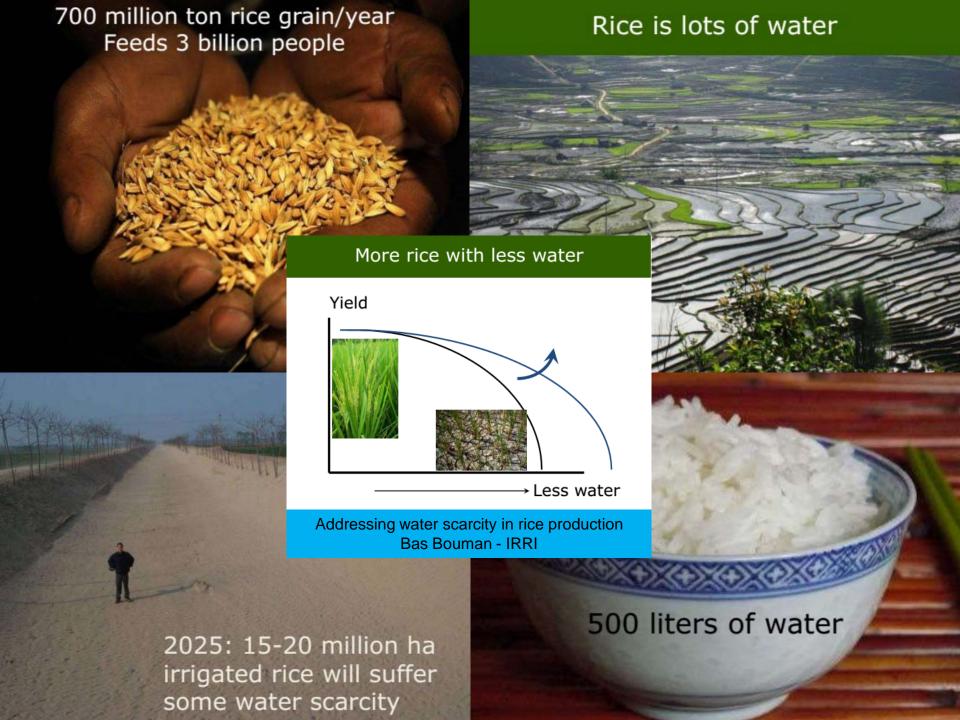
110 Countries

in six continents


By 2050 the world's population expected to surpass

9 Billion People

SHAPING
THE FUTURE


LIMITED WATER AVAILABILITY WILL IMPACT OVER 25% OF THE WORLD'S POPULATION

We are farmers

Netafim is founded by a group of farmers; drip irrigation is in our DNA

CHALLENGES OF GROWING RICE ARE ALSO INCREASING

Resources are limited while demand is growing

The world becomes more and more concerned with environmental issues

Rice Fields today produce 4 ton/Ha. on average

Land for growing rice is almost exhausted

Water is becoming scarce in more and more areas and countries

Flood requires much physical work, while labor is becoming scarce

Population moves to cities; remaining farmers are aging; youngsters not willing to do hard work.

Flooded rice fields produce much methane gas:

Un-aerobic conditions (created by the water that flood the field) are the cause of that.

Flooded rice fields pollute the soil with Nitrogen:

Rice requires much Nitrogen, which is poured into the flood water and washed into the soil

Flooded rice absorbs hazardous metals:

The roots absorb metals from the soil in the presence of flood water

With drip, rice can be grown on hilly land and on sandier land than with flood

With drip, rice can be grown using 50-70% less water

With drip, work required to maintain the irrigation system is far less than flood

With drip, the emission of methane gas is almost completely eliminated

With drip, far less Nitrogen needs to be used, and is not washed away

With drip, the absorption of metals by the roots is dramatically reduced

Rice Fields today produce 4 ton/Ha. on average

Flat land for growing flooded rice is almost exhausted

Water is becoming scarce in more and more areas and countries

Flood irrigation requires much physical work, while labor is becoming scarce
Population moves to cities; remaining farmers are aging; youngsters not willing to do hard work.

Flooded rice fields produce much methane gas:

Un-aerobic conditions (created by the water that flood the field) are the cause of that.

Flooded rice fields pollute the soil with Nitrogen:

Rice requires much Nitrogen, which is poured into the flood water and washed into the soil

Flooded rice absorbs hazardous metals:

The roots absorb metals from the soil in the presence of flood water

INTRODUCTION

- Drip irrigated crops are several around the world
- The rice is the last fronteer explored
- Netafim since 2005 studies the application of drip irrigation on rice
- In Italy from 2010
- Very important economical,
 agronomical e technichal implications
- Also environmental and health

COUNTRIES IN WHICH RESEARCH WAS DONE

- Australia
- Brazil
- China
- India
- Italy
- Japan
- Spain
- Taiwan
- Thailand
- Turkey
- Ukraine
- USA (Texas)

RICE WORLDWIDE TOPICS OF RESEARCH

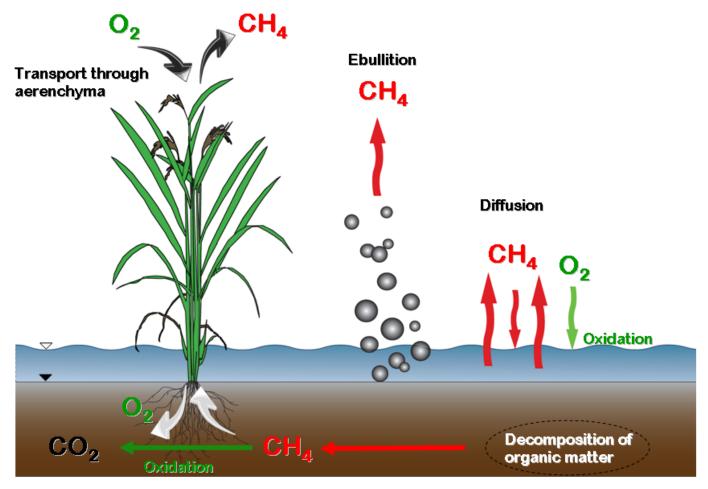
- i. Are rice varieties of significance in suitability to irrigation type?
- ii. Is plant population of significance in suitability to irrigation type?
- iii. How much water is needed to grow rice with drip irrigation (irrigation coefficients)
- iv. How much fertilizer is needed at each growth stage?
- v. What is the relationship between row spacing and dripline spacing?
- vi. What drip type works best? Surface drip, subsurface drip, buried drip laterals?
- vii. Weed control
- viii. Nematode control
- ix. Mycorrhiza inoculation
- Early sowing with plastic mulching
- xi. Using saline water for drip irrigation of rice
- xii. Is it possible to harvest twice a year?

ENVIRONMENTAL RESEARCH TOPICS

- a) Water use reduction
- b) Fertilizer use reduction
- c) Greenhouse gas emission reduction
- d) Reduction in leaching of fertilizers
- e) Power saving
- Reduction in manpower and labor
- g) Use of various soil types and topography
- h) Reduction in diseases and pests
- i) Arsenic uptake
- j) Rice quality

GAS EMISSION

- Atmospheric methane (CH4) is an important **greenhouse gas** it is approximately 20 times more effective than CO2.
- The total annual **CH4 emission** (both from natural and anthropogenic terrestrial sources to the atmosphere) is about 580 Tg*/year (CH4).
- The contribution of natural and man-made wetlands (as rice paddy) to this global total varies between 20 and 40%.
- **Rice agriculture** accounts for some 17% of the anthropogenic CH4 emissions.
- This is because of the prevailing **anaerobic conditions** in these ecosystems, their high organic matter contents and their global distribution.

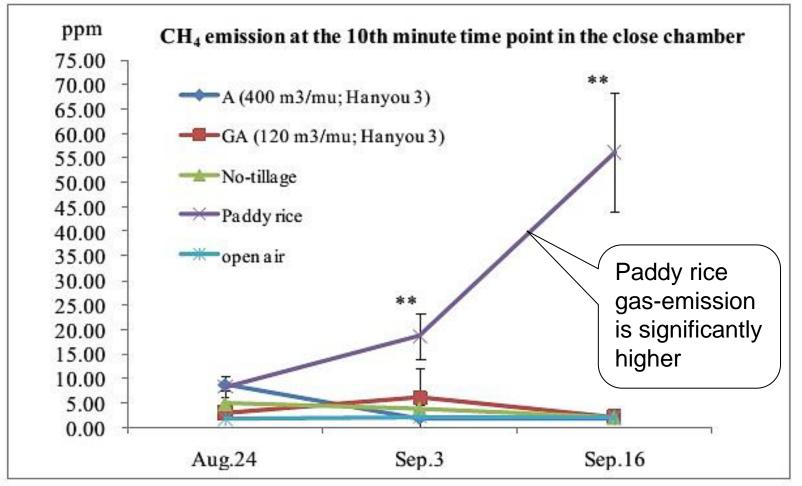

* 1Tg=10 milions of tons

GAS EMISSION FROM RICE PADDY: CH4

Methane oxidation:

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Methanogenesis:


Hydrogenotrophic: $CO_2 + 4H_2 \rightarrow 2 H_2O + CH_4$

Acetotrophic: CH₃COOH → CO₂ + CH₄

EMISSION MONITORING: CHINA TRIALS

Trial in China

EMISSION MONITORING: INDIA TRIALS

	Methane Flux (mg m ⁻² h ⁻¹)				Yield Observation		
Treatments	PI	FF	GF	Mean	GY (Kg ha ⁻¹)	SY (Kg ha ⁻¹)	HI (%)
T1	3.58	6.01	3.18	4.26	4201.0	6682.4	38.60
T2	4.31	7.90	4.31	5.51	3848.8	6266.7	38.04
Т3	4.45	8.52	4.87	5.95	3691.2	6080.5	37.78
T4	4.08	6.57	3.81	4.82	4249.4	6763.9	38.58
T5	5.85	8.99	5.19	6.68	3523.1	6371.8	35.61

Treatments

T1-Lateral distance of 0.8 m, row spacing of 20 cm with dripper flow rate 1.0 lph SDI

T2-Lateral distance of 0.8 m, row spacing of 20 cm with dripper flow rate 1.0 lph on surface

T₃ - Lateral distance of 0.8 m, row spacing of 20 cm with dripper flow rate 0.6 lph on surface

T₄-Lateral distance of 0.8 m, row spacing of 20 cm with dripper flow rate 1.0 lph + 30 % more water on surface

T₅ - conventional irrigation at IW/CPE ratio of 1.25 at 30 mm depth of irrigation (conventional irrigation).

PI Panicle initiation (45 days after planting) FF Fifty % flowering (80 days after planting) GF Grain filling (110 days after planting)

Variety: ADT(R) 45; Season: Summer (2012)

EMISSION MONITORING: ITALY TRIALS

Example of results of gas emission from rice by drip compared with conventional measured by fluxmeter					
EMISSION in AEROBIC R	ICE DRIP IRRIGATION	EMISSION in CONVENTI	ONAL RICE		
SENSOR#1		SENSOR#1			
SENSOR_TYPE: CH4	- 75%	SENSOR_TYPE: CH4			
FLUX (ppm/sec):	0.001	FLUX (ppm/sec):	0.004		
FLUX (moles/m^2/day)	0.00045 - 63%	FLUX (moles/m^2/day)	0.00124		
SENSOR#2		SENSOR#2			
SENSOR_TYPE: CO2		SENSOR_TYPE: CO2			
FLUX (ppm/sec):	0.519	FLUX (ppm/sec):	0.623		
FLUX (moles/m^2/day)	0.18398	FLUX (moles/m^2/day)	0.22074		

Extract from text reports of a comparison between CH4 and CO2
 Drip Laterals and Paddy in submersion (after emptying)

SAVE WATER

DRIP FERTIGATION IN RICE
INTERNATIONAL RESEARCH CONFERENCE
Coimbatore – Tamil Nadu, INDIA
(17th to 19th October 2013)

RICE WITH DRIP IRRIGATION

A Paradigm Shift in Rice Cultivation CLN Rao, Netafim India

- Traditionally rice cultivation in India involves transplanting of seedlings into puddled fields that is kept continuously flooded with water throughout the growing season.
- Irrigated rice with continuous flooding results in low water use efficiency as it consumes 3.000 5.000 liters of water to produce 1 kg of unprocessed rice.

SAVE WATER

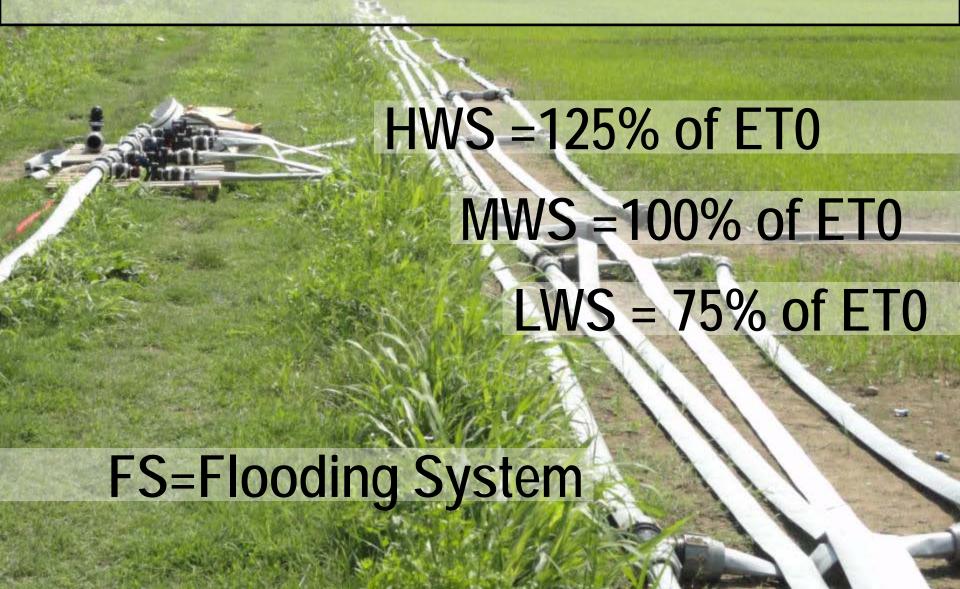
- A different approach to reduce water inputs in rice is to grow the crop like an irrigated dry crop
- Such as Corn or Cotton using modern irrigation technologies such as drip irrigation
- Field experiments indicated seasonal water requirement per hectare of drip irrigated aerobic rice was 8000 m³ and 9000 m³/ha
- Respectively with a yield potential of 10 to 12 tons/ha
- It is about 800-900 liters to produce 1kg of Rice with Drip Irrigation (instead of 3.000-5.000)

ちSHAPING THE FUTURE

SAVE WATER

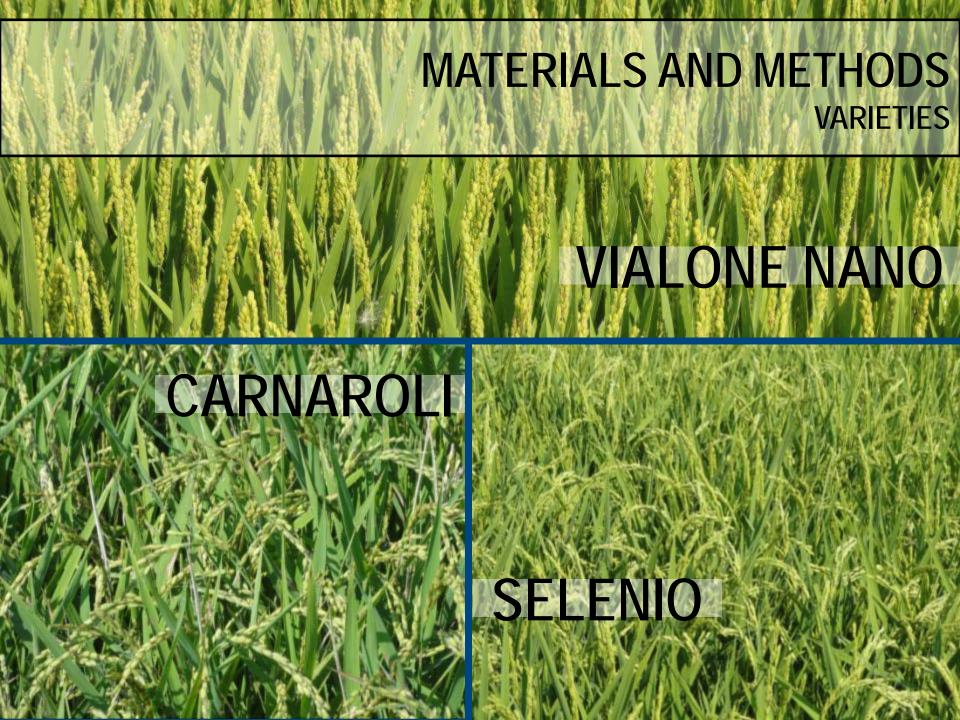
- High water savings & use efficiency can be achieved with drip method of rice cultivation.
- It also enables precise delivery of essential plant nutrients in small amounts, frequently according to crop developmental phases and physiological function.
- Additional benefits of drip ferti-irrigation include energy & labour savings, no leaching, higher water productivity and nutrient use efficiency etc.

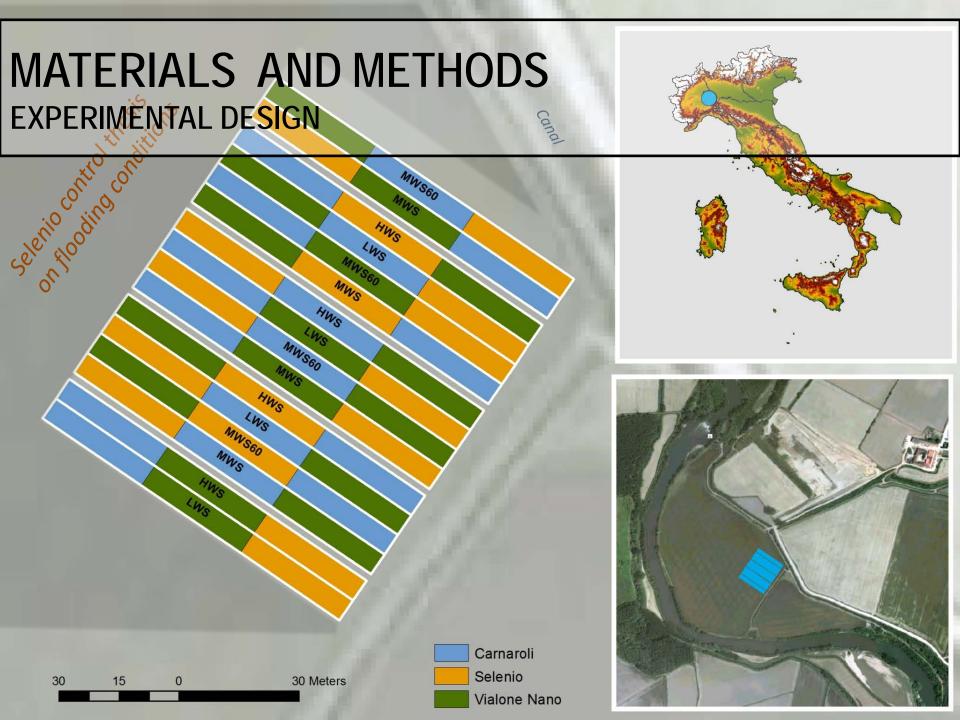
SAVE WATER: RESULTS


TOTAL WATER USE AND WATER SAVING OF RICE UNDER DRIP IRRIGATION SYSTEM

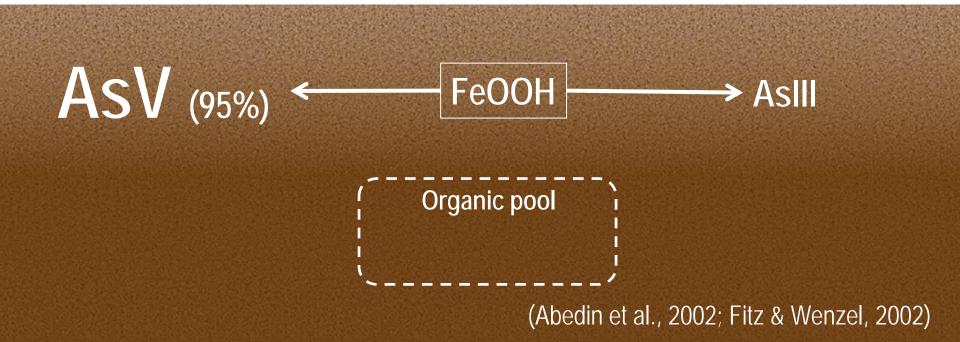
Treatments	Total \	Water Use	(mm)	Water Saving (%)		
rreatments	2010-11	2011-12	2012-13	2010-11	2011-12	2012-13
Drip irrigation at 125 % PE	780.1	706.7	678.5	36.0	40.3	40.2
Drip irrigation at 150 % PE	886.0	784.0	794.2	27.4	33.7	30.0
Surface flood (5 cm)	1220.1	1184.1	1134.5	-	-	-

Gurusamy. A and S. Krishnasamy, 2013

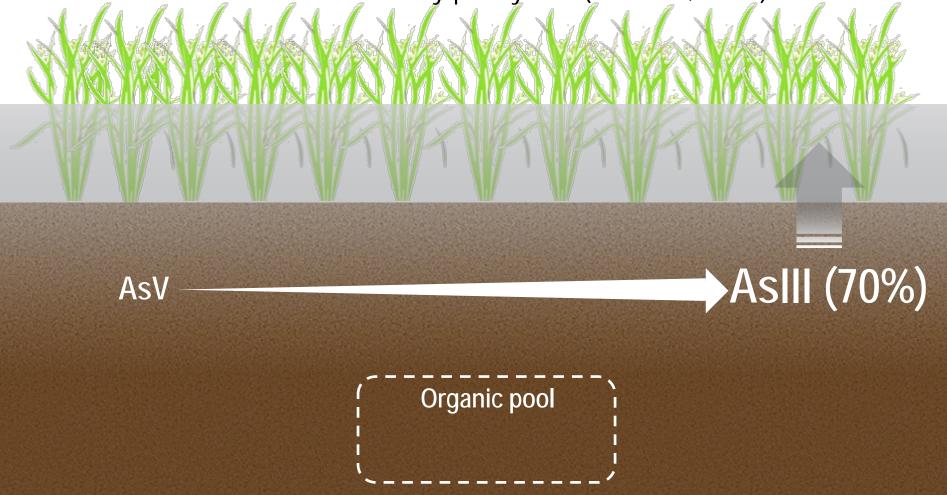



OBJECTIVES DRIPPING VS FLOODING

OBJECTIVES DRIP LINES SPACING


SAVE WATER: RESULTS

	WC [m³/ha]	Grain [kg/ha]	WU [m³/kg]	W _{saving} [%]
I-Kc	4,180	2,514	1.7	-52.2
I-150	5,880	3,080	1.9	-45.1
Control (flooded)	16,680	4,795	3.5	

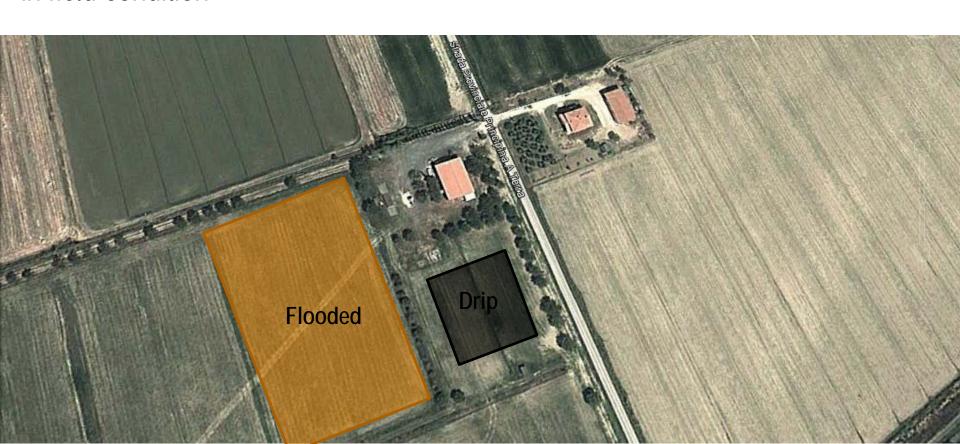

ARSENIC UPTAKE

Low levels of As are naturally present in the soil (Matshullat, 2000)
The background levels worldwide are around 5 mg kg⁻¹ (Mandal & Suzuki, 2002)

ARSENIC UPTAKE

The increased bioavailability of As under flooded conditions is the main reason for an enhanced As accumulation by paddy rice (Xu et al., 2008)

(Abedin et al., 2002; Fitz & Wenzel, 2002; Takahashi et al., 2004)


Water saving and reduced arsenic uptake in aerobic rice (*Oryza sativa* L.): feasibility of drip irrigation under Mediterranean climate

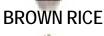
G. Ragaglini, F. Triana, C. Tozzini, F. Taccini, A. Mantino, A. Puggioni, E. Vered, E. Bonari

OBJECTIVE

Evaluation of the potential of drip irrigation in reducing the risk of As accumulation and water consumption in rice, compared to the flooding system in field condition

RESULTS AS CONCENTRATION (mg kg⁻¹)

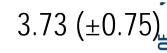
FLOODED


$$0.059 (\pm 0.012)$$

$$0.11 (\pm 0.1)$$

$$1.53 (\pm 0.47)$$

23.33 (±7.79)



ROOTS

SOIL

DRIP

< 0.01

5.8

THE FUTURE

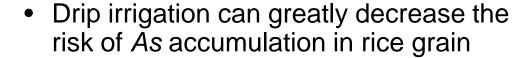
5.7

RICE BY DRIP - CONCLUSION

- Drip irrigation of rice is innovative technology, reliable and sustainable
- It makes use of the resources more effectively and efficiently increasing the yield
- Drip irrigation is used to provide, not only water, but also fertilizers (fertigation)
- The drip uses 45-50% less water and up to 30% less of nutrients to achieve the same target yield
- The drip irrigation, through the diffusion, is a technique which promotes aerobic conditions of the soil

RICE BY DRIP - CONCLUSION

- The aerobic soil condition means many advantages and environmental benefits
- International experience in drip irrigation was observed significant reduction in emissions of greenhouse gases (CO2 and CH4) and groundwater pollution
- Netafim propose a drip system that demonstrates how the rice can be grown in all soil types and topographies, and with all types of water
- The use of marginal soils would extend the UAA of at least 20%
- Produce more rice with less resources by limiting the environmental impact of the cultivation technique



RICE BY DRIP - CONCLUSION

 Arsenic accumulation in rice grain is enhanced by flood irrigation even in soil with low As content

 Drip irrigation could allow a significant reduction of water consumption

Water saving between 10-20.000 m3/ha

FUTURE IS DRIP IRRIGATION?

- The paddy is also Culture of Peoples and we want to preserve it
- But rice production can definitely be improved
- We look to technological and agronomic this primary culture
- After 10 years of experience in the major rice producing countries, by quantity produced and quality expressed, we feel ready to meet the future challenge
- We can bring out of the chambers of paddy rice cultivation using the technique drip
- Drip irrigation is a candidate to be the irrigation technique of the future (SDI in crop rotation)

