Nanotechnologies for water treatments From nanostructured electrodes for water splitting to bio-inspired microbial electrochemical cells and graphene-based desalination membranes #### Marzia Quaglio October 14, 2015 desalting Bio Electro Chemistry water light desalting Bio Electro Chemistry water light # Photoelectrochemical water splitting The photo-electrochemical water splitting, or "artificial photosynthesis", is the light-driven splitting of water into H₂ and O₂ ## **Novel PEC reactor** ## **Novel PEC reactor** desalting Bio Electro Chemistry water light ### Bioelectrochemical device Direct conversion of the chemical energy available in low grade fuels, as organic substrates, into electricity by the use of bio-catalysts as enzymes and whole bacteria. Microbial fuel cells can directly harvest chemical energy from environmental and waste waters. ## Why are MFCs so appealing MFCs can combine energy production and water treatment ## Key elements #### **Bio-catalysts** Optimization of exolectrogenic communities #### **Reactor Design** Catalysts and electrodes ## Nano structured materials Inorganic catalysts Electrodes #### **Nanofibers** #### **Aerogels** desalting Bio Electro Chemistry water light #### Fresh water from RO Reverse osmosis (RO): by applying a pressure difference in excess of the osmotic pressure, pure water flows from high solute concentration side to the low solute concentratio side \rightarrow separation of fresh water is achieved Recent theoretical studies have shown the ability of **porous graphene** to function as efficient RO membrane: fast flow rate, lower applied pressure and efficient salt retention have been predicted [Nanoletters 12, 3602 (2012)]. #### Fresh water from RO Large scale application requires the production of controllable size pores (less than 1nm) with a scalable technological technique. **AIM:** control pore formation in reduced graphene oxide (GO) by thermal treatment employing a combined theoretical (molecular dynamics – MD) and experimental approach. Molecular dynamics simulations of pore formation in GO Contacts: giancarlo.cicero@polito.it #### Fresh water from RO Large scale application requires the production of controllable size pores (less than 1nm) with a scalable technological technique. **AIM:** control pore formation in reduced graphene oxide (GO) by thermal treatment employing a combined theoretical (molecular dynamics – MD) and experimental approach. Non-equilibrium Molecular dynamics simulations are used to asses water permeability. Contacts: giancarlo.cicero@polito.it ## Porous Graphene @ POLITO 1) Growth of **Single Layer Graphene** on copper substrate by CVD 2) Copper etching and **graphene transfer** on a porous substrate 3) Graphene treatment for the selective creation of **controlled porosity** ... for your attention