#### Nanotechnologies for water treatments

From nanostructured electrodes for water splitting to bio-inspired microbial electrochemical cells and graphene-based desalination membranes

#### Marzia Quaglio

October 14, 2015







desalting

Bio Electro Chemistry



water

light







desalting

Bio Electro Chemistry



water

light





# Photoelectrochemical water splitting



The photo-electrochemical water splitting, or "artificial photosynthesis", is the light-driven splitting of water into H<sub>2</sub> and O<sub>2</sub>







## **Novel PEC reactor**









## **Novel PEC reactor**





desalting

Bio Electro Chemistry



water

light





### Bioelectrochemical device

Direct conversion of the chemical energy available in low grade fuels, as organic substrates, into electricity by the use of bio-catalysts as enzymes and whole bacteria.





Microbial fuel cells can directly harvest chemical energy from environmental and waste waters.



## Why are MFCs so appealing

MFCs can combine energy production and water treatment









## Key elements

#### **Bio-catalysts**

Optimization of exolectrogenic communities

#### **Reactor Design**







Catalysts and electrodes







## Nano structured materials

Inorganic catalysts

Electrodes

#### **Nanofibers**









#### **Aerogels**





desalting

Bio Electro Chemistry



water

light





#### Fresh water from RO

Reverse osmosis (RO): by applying a pressure difference in excess of the osmotic pressure, pure water flows from high solute concentration side to the low solute concentratio side  $\rightarrow$  separation of fresh water is achieved



Recent theoretical studies have shown the ability of **porous graphene** to function as efficient RO membrane: fast flow rate, lower applied pressure and efficient salt retention have been predicted [Nanoletters 12, 3602 (2012)].



#### Fresh water from RO

Large scale application requires the production of controllable size pores (less than 1nm) with a scalable technological technique.

**AIM:** control pore formation in reduced graphene oxide (GO) by thermal treatment employing a combined theoretical (molecular dynamics – MD) and experimental approach.



Molecular dynamics simulations of pore formation in GO

Contacts: giancarlo.cicero@polito.it



#### Fresh water from RO

Large scale application requires the production of controllable size pores (less than 1nm) with a scalable technological technique.

**AIM:** control pore formation in reduced graphene oxide (GO) by thermal treatment employing a combined theoretical (molecular dynamics – MD) and experimental approach.



Non-equilibrium
Molecular dynamics
simulations are used to
asses water permeability.

Contacts: giancarlo.cicero@polito.it



## Porous Graphene @ POLITO

1) Growth of **Single Layer Graphene** on copper substrate
by CVD



2) Copper etching and **graphene transfer** on a porous substrate



3) Graphene treatment for the selective creation of **controlled porosity** 







... for your attention