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GJ 367b: A dense, ultrashort-period sub-Earth planet
transiting a nearby red dwarf star
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Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of
USP exoplanets could provide constraints on their unknown formation and evolution processes. We
report the detection and characterization of the USP planet GJ 367b using high-precision photometry
and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red
(M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 + 0.054 Earth-radii and a mass

of 0.546 + 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 +
2.165 grams per cubic centimeter—close to that of iron. An interior structure model predicts that the
planet has an iron core radius fraction of 86 + 5%, similar to that of Mercury’s interior.

ed dwarf stars of spectral type M (M
dwarfs) are cool stars with effective tem-
peratures (7.¢) below ~4000 K (7). They
have masses and radii less than ~60%
the size of those of the Sun and are the
most abundant type of stars in the solar neigh-
borhood (2-4). It has been estimated that M

dwarfs host an average of 2.5 + 0.2 small plan-
ets [planet radius R, < 4 Earth-radii (Rg)] with
periods <100 days (5). Because of the small
stellar radius, the transit signal produced by a
planet orbiting an M dwarf is larger than that
of a planet of the same size orbiting a solar-
type star (G dwarf). The radial velocity (RV)

signal induced by a planet is also larger for an
M dwarf host than for that of a G dwarf, as a
result of the lower stellar mass. M dwarfs
therefore provide an opportunity to search
for exoplanets with a small radius and low
mass. However, young M dwarfs often have
high stellar activity, which gives rise to noise
in the RV observations (6). RV analysis can be
complicated even for old, inactive M dwarfs
because their slow rotation periods have har-
monics in the range of periods where small
planets are sought (7).

GJ 367 (also cataloged as TOI-731) is an M
dwarf located 9.41 pc from the Sun (8) with a
brightness of 10.153 magnitudes in the optical
Vband and 5.78 magnitudes in the infrared K
band. We observed this star with the High
Accuracy Radial Velocity Planet Searcher
(HARPS) spectrograph (9) and determined
its stellar properties. GJ 367 has an effective
temperature of To¢ = 3519 + 70 K, a stellar
mass M = 0.454 + 0.011 solar masses (M),
a stellar radius R, = 0.457 + 0.013 solar radii
(Ro), and a stellar luminosity Ls = 0.0288 +
00029 solar luminosities (Lg) (9) (Table 1).

The Transiting Exoplanet Survey Satellite
(TESS) (10) observed GJ 367 during sector 9
of its survey. TESS acquired optical photo-
metry at 2-min cadence for 27 days from
28 February 2019 to 26 March 2019. The light
curve (brightness as a function of time) was
extracted using the Science Processing Opera-
tions Center (SPOC) pipeline (77). This revealed
a planet candidate with an orbital period of
0.32 days and a radius of 0.75 Rg, which was
designated TOI-731.01 by the TESS Science
Office on the basis of the SPOC transit search
and data validation results. We also searched
for transit signals using the Détection Spécial-
isée de Transits (DST) algorithm (72), which
indicated a transit-like signal every 0.32 days
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Fig. 1. Phase-folded RV and light curve of GJ 367. (A) Phase-folded, 2.6-min
binned TESS light curve (blue circles) of GJ 367 with the best-fitting transit model
(red line). Error bars show the 1-sigma uncertainties of the binned values. (B) The
residuals of the light curve. A noise-correction model has been applied to the data (9).
(C) Phase-folded HARPS RV data for GJ 367. Different color dots correspond to

and a transit depth of ~0.03%, corresponding to
the transit of a sub-Earth-sized planet (Fig. 1).

We performed several tests to ensure that
the candidate was not a false positive. Com-
parison of photometric data using varying
aperture sizes showed no correlation between
the aperture size and transit depth, indicat-
ing that the transit signal is not from another
source blended with GJ 367. We performed
follow-up ground-based photometry and found
no contamination from eclipsing binaries
up to 2.5 arc sec from the target star (9). The
follow-up photometry shows that nearby stellar
sources contribute 9.5 + 1.2% of the flux within
the TESS optimal aperture. This contamina-
tion reduces the transit depth, causing analy-
sis of the TESS light curve to underestimate
the planet’s radius by ~5% (9). We account
for this dilution factor in a transit model to
obtain the true planet radius (Table 1). The
density of the host star, ps, was derived from
the transit light curve (9), finding 7.64 +
3.51g cm2, which is consistent with the value
ps = 6.71735L gem =2 determined from the
spectral analysis discussed above (9).

In a further test, we performed a frequency
analysis of the HARPS RV measurements
and stellar activity indicators (9). The period-
ogram of the RVs has a peak at orbital fre-
quency (f) of 3.103 d™! (P = 0.322 days) that
has no counterpart in the periodograms of the
activity indicators (fig. S4), consistent with
a planetary origin. A further 45-day signal is
present in the RV periodogram and in the
activity indicators. Our analysis of archival
photometry from the Wide Angle Search for
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different corrections applied to the RV model (9). Black open circles are the RV data
phase-binned in intervals of 0.10. The solid black line shows the best-fitting RV model,
which has a semiamplitude of 79.8 + 11.0 cm s~ (D) The corresponding residuals
of the RV data. In (C) and (D), the RV orbital phase limits extend beyond phases O to
1 (shaded gray regions), so the first and last data points are duplicated.
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Planets (WASP) survey indicates a stellar ro-
tational period of 48 + 2 days (9). GJ 367’s Ca(II)
activity index is log R'yx = —5.214 + 0.074,
which corresponds to an estimated stellar
rotation period of 58.0 + 6.9 days (9). This
indicates that the 45-day signal likely origi-
nates from active regions on the stellar sur-
face. We conclude that the 0.322-day period is

3 December 2021

the result of an ultrashort-period (USP) planet,
GJ 367b.

Using a priori information on the host star
properties from our spectral analysis, we de-
rived the physical properties of the GJ 367
system using a Bayesian Markov chain Monte
Carlo (MCMC) code, Transit and Light Curve
Modeller (13), to model the transit photometry
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Table 1. Properties of host star GJ 367 and planet GJ 367b. The stellar parameters were derived from the spectral analysis of the HARPS data (9). Planet
parameters were obtained from the joint model fitting of the TESS photometry and HARPS RVs (9). Reported values are the medians of the posterior
probability distributions with uncertainties of the 34th and 68th percentiles of those distributions.

Parameter Value

Star GJ 367 (TOI 731)
Right ascension (J2000 equinox) 09"44™29 84°
Declination (J2000 equinox) -45°46'35.43"
TESS-band magnitude 8.032 + 0.007
V-band magnitude 10.153 + 0.044
Parallax* (milli-arc sec) 106.272 + 0.056
Distance, d (pc) 9.410 + 0.005
Effective temperature, T (K) 3522 +70
Stellar mass, Ms (M) 0.454 + 0.011
Stellar radius, Rs (Re) 0.457 + 0.013
Stellar density, ps (o) 476704
Metallicity, [Fe/H] ~0.01+012
Surface gravity, log g 4.777 + 0.026
Luminosity, Ls (Lg) 0.0288 + 0.0027
Spectral type M1.0V

Planet GJ 367b

Epoch, Ty [barycentric Julian date (BJDtpg)]

2458544.1348 + 0.0004

Orbital period, P (days)

0.321962" 000010

Planet-to-star radius ratio, R,/Rs

0.014370.30%

Scaled orbital semimajor axis, a/Rs

RV

Impact parameter, b 0.5510.%

RV semiamplitude’, K (cm s %) 79.8 £ 11.0
Systemic RV*, v, (km s ) 47.9258 + 0.0003
Eccentricity, e 0

Transit duration, Ty, (min) 36.9759
Orbital semimajor axis, a (astronomical units) 0.0071 + 0.0002
Orbital inclination, i (°) 80.75 + 0.64
Planet mass, M, (M) 0.546 + 0.078
Planet radius, R, (Rg) 0.718 + 0.054
Planet bulk density, p,, (g cm °) 8.106 + 2165
Equilibrium dayside temperature®, assuming an Earth-like bond albedo (A, = 0.3), Teq (K) 1597 + 39
Equilibrium dayside temperature®, assuming zero bond albedo, Teq (K) 1745 + 43

*A correction of +61 milli-arc sec was applied to the Gaia parallax (9).
only reflects the internal precision of HARPS and does not account for systematic effects, such as gravitational redshift.

and RV data simultaneously (9). Table 1 re-
ports the physical properties of the planetary
system from this analysis. The transit depth
of 212 + 42 parts per million (ppm) and RV
semiamplitude K = 79.8 + 11.0 cm s~ corre-
spond to a planetary radius of 0.718 + 0.054 R,
and a planetary mass of 0.546 + 0.078 Earth-
masses (Mg). Figure 1 shows the phase-folded
light curve and RV measurements of GJ 367
along with the corresponding best-fitting
transit and RV models. We find that GJ 367b
is a sub-Earth planet with a high expected
signal-to-noise metric for emission spectros-
copy (see supplementary text). The planet re-
ceives high stellar irradiation because of its
close proximity to the host star, ~576 times the
incident flux on Earth. This corresponds to a
dayside temperature of 1745 + 43 K (assuming
zero Bond albedo), which is high enough to
evaporate any primordial atmosphere (14-16)

Lam et al., Science 374, 1271-1275 (2021)

TRV induced by the orbiting planet.

and begin to melt or vaporize any silicates or
metallic iron (17).

The measured mass and radius of GJ 367b
imply a bulk density of 8.106 + 2.165 g cm™>.
The bulk composition of a planet can be es-
timated from theoretical mass-radius relations
(18-21). Figure 2 shows the mass and radius
distribution of small planets (R, below 2 Rg,)
along with theoretical predictions for rocky
planets (21, 22). GJ 367b has a mass and radius
consistent with an interior dominated by an
iron core. This is similar to two larger USP
planets, K2-229b (23) and K2-141b (24, 25),
which have enhanced iron fractions (Fig. 3A).
Other known planets with similar sizes to
GJ 367b, such as Kepler-138 b (26, 27) and
TRAPPIST-1d (28, 29), have lower densities
and longer orbital periods and are exposed to
lower stellar irradiation, so they may be less
susceptible to loss of an atmosphere (14).

3 December 2021

1RV of the star-planet system with respect to the observer. The uncertainty
§Assuming no atmospheric circulation.

We used a neural network to investigate
possible interior structures of GJ 367b (9). At
the best-fitting density, the neural network in-
dicates that GJ 367b is predominantly made of
iron (Fig. 3B), composed of 86 + 5% iron core
(by radius), <10% water ice and/or a H and He
gas envelope, and the remainder as silicate
mantle. This composition is similar to that of
Mercury, which the neural network predicts
would have an iron core radius fraction of 81 +
4% (9). This is consistent with the measured
Mercury core radius of 2030 + 37 km (30),
which corresponds to a core radius fraction
of 83 + 2%. For comparison, the interior struc-
tures of Mercury and other terrestrial planets
predicted by our analysis are shown in fig. S8.
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composed of olivine and orthopyroxene enstatite in the upper mantle and bridgmanite
and magnesiowustite in the lower mantle. The ice layer is assumed to be water

ice VI, and the gas layer consists of hydrogen and helium. The interior composition
of GJ 367b was computed using the median mass and radius measurements
(corresponding to the derived median planet density p"*#" = 8106 g cm™). We infer
an iron core filling 86 + 5% of the planet radius with <1% ice and gas, similar to

the interior of Mercury, which has an iron core radius fraction of 83 + 2% (30). If we
take the lowest density of GJ 367b permitted by the observations, 5.941 g cm™,

the planet iron core radius fraction is still higher than that of Earth (fig. S7).
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GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf
star
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A nearby iron-rich sub-Earth planet

The mass and radius of an exoplanet determine its mean density, which provides information about the possible
interior structure. Lam et al. have identified a planet on a 7.7-hour orbit around a nearby red dwarf star. The authors
determined the planet’s radius from the transit, then used radial velocity observations to measure the mass. They
found a sub-Earth—sized planet with a density almost equivalent to pure iron. Its high surface temperature is close to
the vaporization point of iron, suggesting that it is the iron core of a planet that has lost its outer mantle. —KTS
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